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1 Introduction

This paper will consist of first, a thorough univariate analysis of a time series, and second, a multivariate
analysis involving a second time series. The analysis will include time series diagnostics, model selection,
and forecasting, among other methods. The time series that will be used in the analysis are:

e Unemployment refers to the total number of unemployed U.S. males over the age of 20, in thousands.
e production refers to the U.S. production index.

Both time series have been downloaded from Data Market: https://datamarket.com/data/list/?q=

1.1 Univariate Analysis
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Figure 1: Plot of nnemployment in levels

Figure 1 shows a plot of the time series in linear time scale, as well as a plot of the seasonal pattern in
the data. Based on these plots, it is clear that the series is non-stationary and has definite persistency. In
order to progress towards stationarity, we will take the first differences of the series. A plot of the series
and correlogram in first differences are shown in Figure 5 in the Appendix. Although the series in first
differences looks much more stationary, a seasonal pattern is still present, as shown in both plots, as well as
persistency. Figure 6 in the appendix shows a plot of the unemployment series after going into both first and
seasonal differences as well as autocorrelation(ACF) and partial-autocorrelation(PACF)plots . The series
plot appears to be stationary without persistency, and the ACF plot show significant correlations at lags 1
and 2, and the PACF plots show significant correlations at lags 1, 2, and 12.

Testing for a unit root using the augmented Dickey-Fuller test yields a significant p-value 0f0.012, implying
that the series is stationary, which is a prerequisite for the time series models that will be used. and The
Box-Ljung test gives a p-value of 0.0006, confirming that although the series is stationary, it is not a white
noise. This indicates that by not resembling a random process, the series contains information to be modeled.

1.2 SARIMA Models

The next step in the analysis is to identify potential models and compare how they fit the data. As the
series in levels exhibits strong seasonality, seasonal autoregressive moving average(SARIMA) models will be
used to model the data. Based on the significant correlations at lags 1 and 2, shown in the ACF plot in
Figure 6, it appears that the series follows a moving average process of order 1 or 2. Based on the additional
significant correlation at lag 12 shown in the PACF plot in Figure 6, the model should also include a seasonal
term.


https://datamarket.com/data/list/?q

Table 1: SARIMA model performance comparison.

Information Criteria MAE Residual Correlation

Model HOST AIC SIC h=6 h=12 Chi-Sq P-Val

1 (011)(011)[12] (01)(01) 718.512 724.989 168.476 18R8.000 24.083 0.007
2 (012)(012)[12] (02)(01) 702.741 713.536 129.570 134.219 2.968 0.982
3 (012)(011)[12] (02)(01) 701.152 709.787  91.034 124.466 3.208 0.976
4 (112)(111)[12] (02)(01) 703.232 716.185 91.197 123.707 1.403 0.999
5 (111)(111)[12] (11)(01) 707.738 718.532 102.121 119.560 8.691 0.562

Note:
MAE is computed out of sample.
HOST: Highest order of significant terms in (pq)(PQ) form

1.3 Model Comparison

Table 1 presents a comparison of 4 different SARIMA models, including parameterization, goodness-of-fit,
and residual diagnostics. Both Akaike Information Criterion(AIC) and Schwarz Information Criterion(SIC)
are in-sample criteria, used to compare goodness-of-fit, while penalizing for model complexity. Additionally,
the models will all be compared using out-of-sample criteria, namely the Mean Absolute Error(MAE) com-
puted at forecast horizons 2 and 6, to asses the predictive performance of each model. Furthermore, the
table provides the results of the Box-Ljung test, performed on the residual from each model. In this context,
the Box-Ljung test assesses whether the residuals of the model resemble a white noise, indicating that the
model is a good fit for the time series. As the null hypothesis of this test suggests that the residuals are a
white noise, non-significant values indicate a good fit. Finally, the highest order of significant terms(HOST)
is provided for each model, for the purpose of parsimony.

As evident in Table 1, Model 1 is the only model whose residuals are note a white noise, indicating a poor
model fit. Models 3 and 4 yield the lowest MAE at forecast horizon 6, and Models 4 and 5 yield the lowest
MAE at forecast horizon 12. Given that Models 2 and 3 contain the fewest non-significant terms, the analysis
will continue with a comparison of these two models.

1.4 Forecasting Unemployment

Figure 8 in the appendix contains plotted forecasts from Models 2 and 3, including respective 90% and 95%
prediction intervals, at forecast horizon 12(one year). Based on the compared model performance in Table
1, it is not surprising that the plotted forecasts look nearly identical. Both forecasts follow a similar profile,
predicting a characteristic peak and decline, following the observed seasonal pattern.

Although Model 3 has a lower MAE for forecast horizons 6 and 12, as shown in Table 1, we can use the
Diebold-Mariano test to identify whether there is truly any difference in prediction quality between the two
models. Table 2 contains results of the Diebold-Mariano test of difference between the MAE of Models 2 and
3 at forecast horizons 6 and 12, and for loss functions of order 1 and 2. As shown in the table, non-significant
p-values for each test conclude that the two models have effectively identical predictive performance.

Given the results of the Diebold-Mariano test, Model 3 will be chosen as the final model for parsimony. The
equation for this model is formulated as:

(1-L)A =LY, =c+(1—6,L—0,L*)(1 -6, L),

With coeflicients 6; = 0.3401061, 65 = 0.4470895, and ©; = -0.6107956.



Table 2: Diebold Mariano test for differences in forcast accuracy between models 2 and 3.

Test Statistic Forecast Horizon Loss Function Power P-Value

1.026 6 1 0.317
0.920 6 2 0.369
0.541 12 1 0.597
0.326 12 2 0.749

2 Multivariate Analysis

As shown in the plots in Figure 2, the production series is also non-stationary, with strong persistency
and monthly pattern. Following the same procedure as for the unemployment series, we will go into first
differences as well as seasonal differences in order to achieve stationarity.
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Figure 2: Plot of production index in Levels

Now twice-differenced, the production series appears stationary, as shown in Figure 9 in the appendix. Based
on significant correlations at lags 1 and 12, as shown in the autocorrelation plots, it likely that a SARIMA
model, as used for the unemployment series, will be an adequate fit again. Based on a p-value of 0.0001 for
a unit root test on this series, we can conclude that the series is now stationary. Additionally, a Box-Ljung
test yields a p-value of 0.102, suggesting that the series is not yet a white noise.

2.1 Test for Cointegration

As both production and unemployment are integrated of order 2, meaning that they are stationary in sea-
sonally adjusted differences, we can test for the presence of a cointegration relation between the two series.
Cointegration relations indicate a fundamental link between to variables.This relation takes the form of a
linear combination of the variables yielding a stationary series, and represents the long-run relationship be-
tween the two variables. For the purpose of this analysis, the Johansen test for cointegration will be used
to determine whether a cointegration equation exists, and if so, how many. Based on the SIC value, the
VA Rselect function indicates that the optimal number of lags for the relationship is 2. Table 3 provides the
results of the Johansen test procedure, using both the trace test and maximum eigenvalue statistics. Based
on the results shown in the table, the procedure concludes that there is only one cointegrating equation
present according to the 5% critical value.

The resulting cointegration equation is formulated as
151.4319532 + EM P, — 2.087259PROD, = 0

, where d; is a stationary time series.



Table 3: Johansen Cointegration Test

Trace Test Maximum Eigenvalue
10pct  bBpct  1pct  10pct  5Spct 1pct

r<=1| 7.52 924 1297 7.52 9.24 1297
r=0| 17.85 19.96 24.60 13.75 15.67 20.20

Table 4: Granger Causality Test

Res.Df  Df F Pr(>F)
Production causes Unemployment
86 NA NA NA
88 -2 4.488 0.014
Unemployment causes Production
86 NA NA NA
88 -2 1.632 0.202

As the production and unemployment series are cointegrated, it is possible to describe the short-term dy-
namics of the relationship through the use of an error correction model(ECM). This model characterizes the
way in which each series corrects towards the equilibrium relation, based on changes from the other. We can
use the ECM to make additional forecasts, as shown in the plots in Figure 11 in the appendix.

2.2 Cross-correlation Plot and Granger Causality Test

The results from the Johansen cointegration test in the previous section indicate that there is a funda-
mental link between unemployment and production. For the purpose of further exploring this relationship,
we can plot the cross-correlations of the two series, as well as formally test for Granger causality. The
cross-correlation plot depicts the correlation between the stationary unemployment and production series
at different lag and lead levels. As shown in the plot in Figure 10 in the appendix, there is a significant
correlation at lag 2, which represents the correlation between AA15PROD; and AA13EM P, .

Although causality cannot be formally determined, Granger causality refers to whether a process provides
incremental predictive power for making predictions about another. Results of Granger causality tests for
both directions is provided in Table 4. As the null hypothesis of this test represents no Granger causality,
the p-values in Table 4 suggest that production Granger causes unemployment, but unemployment does not
Granger cause production. In short, this test suggests that using lagged values of production will improve
the forecasts for unemployment but not vice versa.

2.3 Vector Autoregressive Model

Based on the belief of a fundamental link between the unemployment and production series, we can improve
the forecasting ability through the use of dynamic models. In the context of time series analysis, the term
dynamic model refers to any model that includes lagged values of the variables under study. Using the
previously selected lag of 2, we will continue with the analysis through an estimation of a vector autore-
gressive(VAR) model, referred to as VAR(2). Using ordinary least squares estimation, the VAR model will
provide one predictive equation for each series, with each equation containing 2 lagged values of both series.
Table 5 contains the results of the VAR(2) estimation, including estimated coefficients and p-values. As
shown in the table, all of the coefficients of lagged values for the predictive unemployment equation are sig-
nificant, apart from AA;9PROD;_;. This indicates that knowing lagged valued of production improves the



Table 5: VAR model coefficients

Unemployment Production
Estimate Std. Error t value  Pr(>|t|) Estimate Std. Error t value  Pr(>|t])
ddemp.I1  0.2204899  0.0990273 2.2265558 0.0285903 -0.0008516  0.0400854 -0.0212442 0.9831001
ddprod.I1  0.5054051  0.2582356  1.9571472 0.0535739 -0.3018890  0.1045315 -2.8880176 0.0049032
ddemp.12  0.3447377  0.0985758 3.4971839 0.0007465  0.0673519  0.0399026  1.6879070 0.0950527
ddprod.12  0.6990380  0.2613754 2.6744596 0.0089577 -0.1842272  0.1058025 -1.7412363 0.0852182
const 0.3152218  1.1378376 0.2770358 0.7824174  0.0858407  0.4605869  0.1863724 0.8525917

forecasting ability for unemployment, as concluded in the previous section. Conversely, AA1s PROD; 1 is
the only significant coefficient in the predictive equation for production, which supports the previous conclu-
sion of no Granger causality. Using the coefficients estimated from the VAR(2) model, we can simultaneously
forecast both AA1 3, EM P and AA12PROD, using these equations:

Using the VAR(2) model estimated earlier, we can use the equations to make simultaneous forecasts of the
stationary series AA1o EM P and AA13PROD, as shown in the plots in Figure 12 in the appendix.

Additionally, VAR models are characterized by their impulse response functions(IRF), which capture how
an impulse originating at a specific time in one series proceeds through the system. Figure 3 contains plots
that describe impulses from unemployment(left) and from production(right). As shown in the left plot, a
unitary impulse in unemployment does not have a large effect on the production level at any time point.
However, from the right plot, it is evident that a unitary impulse in production induces a large increase in
unemployment that lasts until time ¢ 4 3.
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Figure 3: Impulse response function plots

3 Conclusion

In conclusion, we have found that a SARIMA(012)(011) is adequate for modelling the unemployment data
for the purposes of short term predictions. Additionally, the multivariate analysis concluded that production
yields incremental predictability, that is, changes in production tend to have an effect on unemployment
within a 1-3 month window.



Appendix

Unemployment in Levels

Unemployment in Levels
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Figure 4: Autocorrelation plots for unemployment in levels.
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Figure 6: Seasonally adjusted unemployment series
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Figure 7: Residual autocorrelation plots
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Figure 8: Comparison of forecasted unemployment using two different SARIMA models
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Part I
R Code

“““fr, include=FALSE}

knitr :: opts_chunk$set (echo = FALSE, message=FALSE, warning=FALSE)
library (ggplot2)

library (CADFtest)
library (forecast)
library (vars)
library (kableExtra)
library (magrittr)
library (dplyr)
library (tidyverse)

library (urca)

library (gridExtra)

““{r setup, message=FALSE, warning=FALSE}

##Project

prod<-read.csv(”prod.csv”  header=T)

prod<—prod[—107,]

prod.ts <— ts(prod$General.index.of.industrial.production .. monthly

, frequency = 12 ,start = ¢(1967,1))

emp.ts <— ts((prod$Monthly.U.S.. male..20. years.and.over ..unemployment
figures..10..3..1948.1981/10)

, frequency = 12 ,start = c(1967,1))

““{r level—plot, fig.cap="Plot_of_nnemployment_in_levels” , out.width="40%"

, fig .show="hold” ,fig.align="center’}

emp.ts %% autoplot +labs(x="Time” ,y="Unemployment.(in_tens._of_thousands)”
,title="Number_of_Unemployed .U.S._Males”)+theme_bw ()

emp.ts %% ggseasonplot (col=rainbow(12))+labs (y="Unemployment.(in_tens_of_thousands)’
,title="Number_of _Unemployed .U.S._Males_by_Year_and _Month”)+theme _bw ()

[

)

“““{r emp—unit_root, message=FALSE, warning=FALSE, error=FALSE}
emp.ts.d.s<— emp.ts %% diff(lag=12) %% diff
###Unit Root Test
##NULL: Series is not stationary
max. lag<— emp.ts.d.s %% length %% sqrt %% round
##With drift as no trend is apparent in differences
emp.ts.d.s.urt<— emp.ts.d.s %% CADFtest( type= "drift”
, criterion= ”"BIC” , max.lag .y=max.lag) %% summary
#H##Boxr—Ljung Test
##NULL: All © autocorrelations are zero, implying a white noise.
emp.ts.d.s.box<—Box.test (emp.ts.d.s, lag = max.lag, type = ”"Ljung—Box”)
“““f{r arima—compare_function, message=FALSE, warning=FALSE, error=FALSE}
arima_compare<—function (model){
aic <— model$aic
bic <— model %% AIC(k = log(64))
boxt<— model$residuals %% Box.test ( lag = max.lag, type = ”"Ljung—Box”)
boxchi <— boxt$statistic
boxp <— boxt8$p.value
list (aic=aic , bic=bic , boxchi=boxchi , boxp=boxp)

“““Ar, message=FALSE, warning=FALSE, error=FALSE}
get _pred _error<—function(ts,h,ar_ord,ar_sea){
y<—ts



S=round (0.75*length(y))
errorl<—c()
for (i in S:(length(y)—h))
{ .

i

mymodel . sub<—arima (y[l:1], order = ar_ord,seasonal=ar_sea)
predictl<—predict (mymodel.sub,n.ahead=h)$pred [h]
errorl<—c(errorl ,y[it+h]—predictl)

}

return(errorl)

}

[N

““‘{r generate—sarima_models, message=FALSE, warning=FALSE, error=FALSE}

sarl<— emp. ts%>% arima(order=c(0,1,1), seasonal = list (order = ¢c(0,1,1)))
sar2<— emp. ts%>% arima(order=c(0,1,2), seasonal = list (order = ¢c(0,1,2)))
sar3<— emp. ts%>% arima(order=c(0,1,2), seasonal = list (order = ¢c(0,1,1)))
sard<— emp. ts%>% arima(order=c(1,1,2), seasonal = list (order = c(1,1,1)))
sarb<— emp.ts%>% arima(order=c(1,1,1), seasonal = list (order = c(1,1,1)))

e

“““{r sarima—comparison, tab.cap="SARIMA_Model_.Comparison”
,fig.align="center” ,warning=FALSE, error=FALSE}
sarlc<— sarl %% arima_compare
sar2c<— sar2 %% arima_compare
sar3c<— sar3 %% arima_compare
sardc<— sar4d %% arima_compare
sarbc<— sarb %% arima _compare
tribble ( 7.7 ,7 ?Model”, "?HOST”, = ”AIC”, ~ ”SIC” ,””h=6" ,””h=12"
. T 7Chi=Sq”, ~ "P-Val”,
717 .7 (011)(011)[12]”,7(01)(01)”, sarlc$aic, sarlc$bic
, get_pred _error (emp.ts,6,c(0,1,1),c(0,1,1)) %%abs%>%mean
, get_pred_error (emp.ts,12,¢(0,1,1),¢(0,1,1))%>%abs%>%mean
, sarlc$boxchi, sarlc$boxp,

727.7(012)(012)[12]”7,7(02)(01)”, sar2c$aic, sar2c$bic

, get_pred _error (emp.ts,6,c(0,1,2),¢(0,1,2))%>%abs%>%mean
, get_pred_error (emp.ts,12,¢(0,1,2),c(0,1,2))%>%abs%%
mean, sar2c$boxchi, sar2c8$boxp,

737,7(012)(011)[12]”7,7(02)(01)”, sar3c$aic, sar3c$bic

, get_pred _error (emp.ts,6,c(0,1,2),¢(0,1,1))%>%abs%>%mean
, get_pred_error (emp.ts,12,¢(0,1,2),c(0,1,1))%>%abs%%
mean, sar3c$boxchi, sar3c$boxp,

747 7 (112)(111)[12]”7,7(02)(01)”, sardc$aic, sardc$bic

, get_pred _error (emp.ts,6,c(1,1,2),¢c(1,1,1))% >%abs%>%mean
, get_pred _error (emp.ts,12,¢(1,1,2),c(1,1,1))%>%abs%%
mean, sar4c$boxchi, sardc$boxp,

577 (111)(111)[12]”,7(11)(01)”, sarbc$aic, sarbc$bic
, get_pred_error (emp.ts,6,c(1,1,1),¢c(1,1,1))%>%abs’>%mean
, get_pred _error (emp.ts,12,¢c(1,1,1),c(1,1,1))%>%abs%%
mean, sarb5c$boxchi, sarb5c$boxp)%>%
mutate _if (is.numeric, round, 3) %%
kable ( booktabs=TRUE, caption="SARIMA.model_performance._comparison.”) %%
kable_styling (bootstrap _options="condensed” , full _width=F) %%

add_header_above(c(”.”,”.7,”.”, 7"Information._Criteria”’=2
,"MAE” =2,” Residual _Correlation” = 2)) %%
footnote (general = c¢(”MAE_is _.computed._out._.of_sample.”

,"HOST: _Highest .order_of_significant .terms.in.(pq)(PQ)_form”))

[N

##Model Comparison



[SNANY

{r dm—test ,tab.cap="Diebold _Mariano._test._for_differences.in._forcast
accuracy .between_models_.2_and_3.” ;message=FALSE, warning=FALSE, error=FALSE}
emp_dml<—dm. test (get _pred _error (emp.ts ,6,c(0,1,2),c(0,1,2))

,get _pred _error (emp.ts,6,c(0,1,2),¢(0,1,1)),h=6,power=1)%>%

unlist (use.names=FALSE) %% as.numeric

emp_dm2<—dm. test (get _pred _error (emp.ts ,6,c(0,1,2),c(0,1,2))

,get_pred _error (emp.ts,6,c(0,1,2),c(0,1,1)),h=6,power=2)%>%

unlist (use .names=FALSE)%>% as.numeric

emp_dm3<—dm. test (get _pred _error (emp.ts,12,¢c(0,1,2),c(0,1,2))

,get _pred _error (emp.ts,12,¢(0,1,2),c(0,1,1)),h=12 power=1)%>%

unlist (use .names=FALSE)%>% as.numeric

emp_dmd<—dm. test (get _pred_error (emp.ts,12,¢c(0,1,2),c(0,1,2))

,get _pred _error (emp.ts,12,¢(0,1,2),¢c(0,1,1)),h=12,power=2)%>%

unlist (use .names=FALSE)%>% as.numeric

tribble (7" Test.Statistic” ,”” Forecast .Horizon” ,”” Loss .Function_Power”
T"P—Value” |

emp_dml[1] ,emp_dml[2] ,emp_dml[3],emp_dml[5],

emp_dm2[1] ,emp_dm2[2] ,emp_dm2[3] ,emp_dm2[5],

emp_dm3[1] ,emp_dm3[2] ,emp_dm3[3] ,emp_dm3[5],

emp_dm4[1] ,emp_dm4[2] ,emp_dm4[3] ,emp_dm4[5]) %%

mutate_if (is.numeric, round, 3) %%
kable (booktabs=TRUE, caption="Diebold .Mariano_test .for
-.differences_in_forcast
—.accuracy -between._models_2_and_3.”)%>%
kable_styling (bootstrap _options="condensed” , full _width=F)
“““f{r prod—level—plot, fig.cap="Plot_of_production.index.in_Levels”
, out.width="40%" ,fig .show="hold” ,fig.align="center’
, message=FALSE, warning=FALSE, error=FALSE}
prod.ts %% autoplot +labs (x="Time” ,y="Production.Index”
,title="Production.Index”)+theme_bw()
prod.ts %% ggseasonplot (col=rainbow (12))+labs (y="Production._Index”
,title="Production._Index_by.Year._.and_-Month”)+theme _bw/()
“““{r prod—unit_root, message=FALSE, warning=FALSE, error=FALSE}
prod.ts.d.s<— prod.ts %% diff(lag=12) %% diff
###Unit Root Test
##NULL: Series is not stationary
max. lag<— prod.ts.d.s %% length %% sqrt %% round
##With drift as no trend is apparent in differences
prod.ts.d.s.urt<— prod.ts.d.s %% CADFtest( type= 7drift”, criterion= "BIC”
, max.lag .y=max.lag) %% summary
###Box—Ljung Test
H#H#NULL: All x autocorrelations are zero, implying a white noise.
prod.ts.d.s.box<—Box. test (prod.ts.d.s, lag = max.lag, type = ”Ljung—Box”)
““{r cointegration—test , message=FALSE, warning=FALSE, error=FALSE}
trace_test<—ca.jo(cbind(emp.ts, prod.ts),type="trace” K=2 ecdet="const”
,spec="transitory”)
eigen_test<—ca.jo(cbind(emp.ts, prod.ts),type="eigen” K=2 ecdet="const”
,spec="transitory”)

[SEN]

[SNN4

{r johansen—results ,tab.cap="Johansen_test._for._cointegration”

,fig . align="right” ,fig .show="hold” , message=FALSE, warning=FALSE, error=FALSE}

cbind (trace_test@cval ,eigen_test@cval) %% kable(caption="Johansen_Cointegration._Test”
,booktabs=TRUE) %% kable_styling (bootstrap _options="condensed” , full _width=F) %%

add_header _above(c(”.”, "Trace_.Test” = 3, "Maximum.Eigenvalue” =3))

[SNANY

{r granger—test, tab.cap="Test_results_for_Granger_causality.”
,fig .show="hold” ,fig.align="1eft”}



grangerl<—grangertest (prod.ts.d.s,emp.ts.d.s,order=2)
granger2<—grangertest (emp.ts.d.s,prod.ts.d.s,order=2)
rbind (grangerl ,granger2) %%  mutate_if(is.numeric, round, 3) %%
kable (caption="Granger.Causality .Test” ,booktabs=TRUE)%>%
kable_styling (bootstrap _options="condensed” , full _width=F
,position="right”  font_size=10) %%
group _rows (” Production._causes_Unemployment” , 1, 2) %%
group _rows (” Unemployment._causes_Production”, 3, 4)
“““fr, message=FALSE, warning=FALSE, error=FALSE}
#VARselect(cbind (emp.ts.d.s,prod.ts.d.s))
ddemp<—emp.ts.d.s
ddprod<—prod.ts.d.s
fit _varl<-VAR(cbind (ddemp,ddprod),type="const” ,p=2)
res<—summary ( fit _varl)
emp_var<-res$varresult$ddemp$coefficients [,1] %% unname() %% round(3)
prod_var<-res$varresult$ddprod$coefficients|,1] %% unname() %% round(3)
““‘{r var—coefficients ,tab.cap="VAR(2)_model_coefficients._for _Unemployment
and.Production”
,fig.align="center”, message=FALSE, warning=FALSE, error=FALSE}
cbind (res$varresult$ddemp$coefficients ,res$varresult$ddprod$coefficients) %%
kable (caption="VAR_model_coefficients” ,booktabs=TRUE) %%
kable_styling (bootstrap _options="condensed” , full _width=F) %%
add_header _above(c(”.”, "Unemployment” = 4, ”Production”=4))
“““{r impulse—response—plots , fig .cap="Impulse_response_function_plots”
, out.width="50%" , fig .show="hold” , message=FALSE, warning=FALSE, error=FALSE}
irf_varl<—irf (fit_varl, ortho=FALSE, boot=TRUE, impulse ="ddemp” )
irf_var2<—irf (fit _varl,ortho=FALSE, boot=TRUE, impulse ="ddprod”)
plot (irf _varl)
plot (irf _var2)
#Appendix
““‘{r acf—emp—levels, fig.cap="Autocorrelation_plots._for_unemployment_in_levels.”
, out.width="45%" , fig .show="hold” ,fig.align="center’}
emp.ts %% as.vector %% acf(lag.max=24 main="Unemployment._in._.Levels”)
emp.ts %% as.vector %% pacf(lag .max=24 main="Unemployment._in._Levels”)

[NNY

{r emp—first —differences , fig.cap="Series_plot._and_correlogram._for_unemployment
in_differences.”

, out.width="45%" , fig .show="hold” ,fig.align="center '}

emp.ts %% diff %% autoplot +labs(x="Time” ,y="Unemployment._Change”
,title="Unemployment_in_Differences”)+theme_bw()

emp.ts %% diff %% as.vector %% acf(lag.max=24,main="Unemployment_in_Differences”)
#emp.ts %% as.vector % pacf(lag.mar=24,main="Unemployment in Levels”)

“““{r emp—stationary ,fig.cap="Seasonally _adjusted _unemployment_series_in_differences.”
, out.width="30%" , fig .show="hold” ,fig.align="center '}

emp.ts.d.s %% autoplot +labs(x="Time” ,y="Seasonally _Adj._Unemployment.Change”
,title="Twice—Differenced .Unemployment”)+theme _bw ()

emp.ts.d.s %% as.vector %% acf(lag.max=24 main="Twice—Differenced _.Unemployment” )
emp.ts.d.s %% as.vector %% pacf(lag.max=24 main="Twice—Differenced .Unemployment” )
““‘{r emp—SARIMA-residuals , fig.cap="Residual_autocorrelation_plots

of _the_two_SARIMA_forecasted .models”

, out.width="45%" , fig .show="hold” ,fig.align="center '}

sar28residuals %% as.vector %% acf(lag .max=24, main="SARIMA(012)(012) _Residuals”)
sar38residuals %% as.vector %% acf(lag.max=24,main="SARIMA(112)(111)_Residuals”)

[N

[N

{r emp—forecasts , fig.cap="Comparison_of_forecasted _unemployment



using _.two_different _.SARIMA_models”

, out.width="45%" , fig .show="hold” ,fig.align="center '}

forecastl<— arima(emp.ts,order=c(0,1,2), seasonal = list (order = ¢c(0,1,2))) %%
forecast (h=12,level=c(90,95))

forecastl %% autoplot+labs (x="Time” ,y="Unemployment(in_tens_of_thousands)”)+theme _bw()
forecast2<— arima(emp.ts,order=c(0,1,2), seasonal = list (order = c(0,1,1))) %%
forecast (h=12,level=c(90,95))

forecast2 %% autoplot+labs (x="Time” ,y="Unemployment (in._tens_of_thousands)”)+theme _bw|()
“““{r prod—stationary ,fig.cap="Seasonally_adjusted_production_.series_in.differences.”

, out.width="30%" , fig .show="hold” ,fig.align="center '}

prod.ts.d.s %% autoplot +labs(x="Time” ,y="Seasonally .Adj._Production._Change”
,title="Twice—Differenced .Production”)+theme _bw ()

prod.ts.d.s %% as.vector %% acf(lag.max=24 main="Twice—Differenced .Production”)
prod.ts.d.s %% as.vector %% pacf(lag.max=24 main="Twice—Differenced _.Production”)

Cc

[ N4

{r cross—correlation, fig.cap="Plot_of_cross—correlations.at_respective_lags
and_leads.”

,fig.align="center” ,out.width="50%"}

ccf(emp.ts.d.s,prod. ts.d.s,main="Cross—Correlations” ,lag .max = 24)

[

(N4

{r ecm—forecasts ,fig.cap="Forecasts.for_unemployment_and._production._using ECM.”

, out.width="80%" , fig .show="hold” ,fig.align="center’}

fit _var<—vec2var (trace_test ,r=1)

predict (fit _var,n.ahead=12) %% plot ()

“““Ar var—forecasts ,fig.cap="VAR(2)._forecast._plots”, out.width="60%" ,fig .show="hold”
,fig.align="center’, message=FALSE, warning=FALSE, error=FALSE}

#predict (fit _varl,n.ahead=6)

fit _varl.f<—forecast (fit_varl h=6)

fit _varl.f %% autoplot +labs(title="VAR_.Forecasts”)+theme _bw ()

[
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